p-group, metabelian, nilpotent (class 3), monomial
Aliases: M4(2)⋊3C4, C22.2C42, C4.4(C4⋊C4), (C2×C4).2Q8, (C2×C4).113D4, (C22×C4).2C4, C22.5(C4⋊C4), C23.22(C2×C4), C4.21(C22⋊C4), C2.2(C4.D4), (C2×M4(2)).8C2, C2.2(C4.10D4), (C22×C4).20C22, C22.26(C22⋊C4), C2.8(C2.C42), (C2×C4⋊C4).3C2, (C2×C4).15(C2×C4), SmallGroup(64,24)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.C42
G = < a,b,c,d | a2=b2=d4=1, c4=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=abc >
Character table of C22.C42
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | i | -i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | -i | i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | -i | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -1 | 1 | -1 | -i | i | -i | 1 | i | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -1 | 1 | -1 | i | -i | i | 1 | -i | linear of order 4 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | i | -i | -i | i | 1 | 1 | -1 | i | -1 | linear of order 4 |
ρ11 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | -i | -i | -i | i | -1 | -1 | 1 | i | 1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | i | -i | -i | i | i | linear of order 4 |
ρ13 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | -1 | 1 | -i | i | -i | -1 | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | -1 | 1 | i | -i | i | -1 | -i | linear of order 4 |
ρ15 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -i | i | i | -i | i | i | -i | 1 | 1 | -1 | -i | -1 | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | i | -i | -i | i | i | i | -i | -1 | -1 | 1 | -i | 1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4.D4 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 20)(10 17)(11 22)(12 19)(13 24)(14 21)(15 18)(16 23)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17 31 10)(2 15 32 22)(3 23 25 16)(4 13 26 20)(5 21 27 14)(6 11 28 18)(7 19 29 12)(8 9 30 24)
G:=sub<Sym(32)| (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,31,10)(2,15,32,22)(3,23,25,16)(4,13,26,20)(5,21,27,14)(6,11,28,18)(7,19,29,12)(8,9,30,24)>;
G:=Group( (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,20)(10,17)(11,22)(12,19)(13,24)(14,21)(15,18)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,31,10)(2,15,32,22)(3,23,25,16)(4,13,26,20)(5,21,27,14)(6,11,28,18)(7,19,29,12)(8,9,30,24) );
G=PermutationGroup([[(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,20),(10,17),(11,22),(12,19),(13,24),(14,21),(15,18),(16,23)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17,31,10),(2,15,32,22),(3,23,25,16),(4,13,26,20),(5,21,27,14),(6,11,28,18),(7,19,29,12),(8,9,30,24)]])
C22.C42 is a maximal subgroup of
C2.C2≀C4 (C2×C4).D8 (C2×C4).Q16 C2.7C2≀C4 C23.15C42 C4×C4.D4 C4×C4.10D4 C42.96D4 C42.97D4 C4○D4.4Q8 C4○D4.5Q8 (C22×C4).275D4 (C22×C4).276D4 C4≀C2⋊C4 C42⋊9(C2×C4) C8.C22⋊C4 C8⋊C22⋊C4 M4(2)⋊20D4 M4(2).45D4 M4(2).48D4 M4(2).49D4 C4.10D4⋊3C4 C4.D4⋊3C4 M4(2)⋊8Q8 C42.128D4 M4(2)⋊D4 M4(2)⋊4D4 (C2×D4)⋊2Q8 (C2×Q8)⋊2Q8 C42⋊11D4 C42⋊12D4 M4(2).10D4 M4(2).11D4 M4(2)⋊Q8 C42⋊3Q8 M4(2).12D4 M4(2).13D4 (C2×C8).55D4 (C2×C8).165D4 M4(2).Q8 M4(2).2Q8 C22.F5⋊C4
C4p.(C4⋊C4): M4(2).5Q8 M4(2).6Q8 C12.(C4⋊C4) M4(2)⋊Dic3 (C2×C20).Q8 M4(2)⋊Dic5 M4(2)⋊F5 C28.(C4⋊C4) ...
C22.C42 is a maximal quotient of
C23.19C42 C42.3Q8 C42.4Q8 C42.25D4 C42.7Q8 C42.388D4 C23.C42 C42.30D4 C42.32D4 M4(2)⋊F5 C22.F5⋊C4
(C2×C4).D4p: C42.27D4 C42.8Q8 C12.(C4⋊C4) M4(2)⋊Dic3 (C2×C20).Q8 M4(2)⋊Dic5 C28.(C4⋊C4) M4(2)⋊Dic7 ...
Matrix representation of C22.C42 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 11 | 3 | 16 | 0 |
0 | 0 | 6 | 14 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 3 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 10 | 9 | 16 | 10 |
0 | 0 | 8 | 9 | 1 | 7 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 12 | 0 | 0 |
0 | 0 | 13 | 7 | 0 | 0 |
0 | 0 | 11 | 2 | 4 | 11 |
0 | 0 | 13 | 3 | 11 | 13 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,11,6,0,0,0,1,3,14,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,11,0,10,8,0,0,3,0,9,9,0,0,15,1,16,1,0,0,0,1,10,7],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,10,13,11,13,0,0,12,7,2,3,0,0,0,0,4,11,0,0,0,0,11,13] >;
C22.C42 in GAP, Magma, Sage, TeX
C_2^2.C_4^2
% in TeX
G:=Group("C2^2.C4^2");
// GroupNames label
G:=SmallGroup(64,24);
// by ID
G=gap.SmallGroup(64,24);
# by ID
G:=PCGroup([6,-2,2,-2,2,2,-2,48,73,103,650,489,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=d^4=1,c^4=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*b*c>;
// generators/relations
Export
Subgroup lattice of C22.C42 in TeX
Character table of C22.C42 in TeX